Purus suspendisse a ornare non erat pellentesque arcu mi arcu eget tortor eu praesent curabitur porttitor ultrices sit sit amet purus urna enim eget. Habitant massa lectus tristique dictum lacus in bibendum. Velit ut viverra feugiat dui eu nisl sit massa viverra sed vitae nec sed. Nunc ornare consequat massa sagittis pellentesque tincidunt vel lacus integer risu.
Mauris posuere arcu lectus congue. Sed eget semper mollis felis ante. Congue risus vulputate nunc porttitor dignissim cursus viverra quis. Condimentum nisl ut sed diam lacus sed. Cursus hac massa amet cursus diam. Consequat sodales non nulla ac id bibendum eu justo condimentum. Arcu elementum non suscipit amet vitae. Consectetur penatibus diam enim eget arcu et ut a congue arcu.
Vitae vitae sollicitudin diam sed. Aliquam tellus libero a velit quam ut suscipit. Vitae adipiscing amet faucibus nec in ut. Tortor nulla aliquam commodo sit ultricies a nunc ultrices consectetur. Nibh magna arcu blandit quisque. In lorem sit turpis interdum facilisi.
Vitae vitae sollicitudin diam sed. Aliquam tellus libero a velit quam ut suscipit. Vitae adipiscing amet faucibus nec in ut. Tortor nulla aliquam commodo sit ultricies a nunc ultrices consectetur. Nibh magna arcu blandit quisque. In lorem sit turpis interdum facilisi.
“Nisi consectetur velit bibendum a convallis arcu morbi lectus aecenas ultrices massa vel ut ultricies lectus elit arcu non id mattis libero amet mattis congue ipsum nibh odio in lacinia non”
Nunc ut facilisi volutpat neque est diam id sem erat aliquam elementum dolor tortor commodo et massa dictumst egestas tempor duis eget odio eu egestas nec amet suscipit posuere fames ded tortor ac ut fermentum odio ut amet urna posuere ligula volutpat cursus enim libero libero pretium faucibus nunc arcu mauris sed scelerisque cursus felis arcu sed aenean pharetra vitae suspendisse ac.
Many enterprises we speak with are quickly learning that naively deploying AI guardrails can often end up exceeding the costs of their underlying base modes. Making a GenAI use-case safe and secure can be more expensive than making it performant if done incorrectly.
NVIDIA’s NeMo Guardrails research highlights how implementing robust guardrails can triple both the latency and cost of a standard AI application. Similarly, traditional approaches to AI guardrailing leveraging prompt engineering can also increase operational expenses. In practice, we found that well-defined guardrails require around 250 tokens to clearly define. With GPT-4o’s pricing of $2.50 per million tokens, applying 12 guardrails to 100M requests with prompt engineering can inflate costs by over four times in the example scenario below.
Securing large language models is a complex and resource-intensive process that often proves to be costlier than using the base model itself. There are three key factors driving these costs:
Enterprise AI applications require a robust set of guardrails and must scale to efficiently serve high throughputs and millions of users. Traditional AI guardrail solutions fail to scale effectively for such applications – demonstrating a need for an efficient, yet performant AI guardrail solution.
DynamoGuard addresses these challenges by delivering highly performant, scalable AI guardrails at a fraction of the cost associated with other guardrailing solutions. DynamoGuard empowers enterprises to enforce complex AI guardrails without compromising on cost or performance.
Below, we provide a comparison of estimated costs across guardrail solutions for enforcing a set of 12 policies at a throughput of 5 QPS and a 400 token prompt size.
DynamoGuard’s cost efficiency stems from several key innovations:
The majority of AI guardrails and compliance solutions don’t effectively scale for enterprises. DynamoGuard’s approach – delivering lightweight, optimized models – helps enterprises control costs without sacrificing performance, even as they scale from prototype to global deployment.